/// FR Circuit breaker, hydraulic magnetic, very high current

Rugged circuit breaker for extreme reliability, within long endurance applications and harsh environments

FR

Circuit breaker

Description

Hydraulic magnetic circuit breaker for very high current railway applications to protect electronic equipment and components against unintended high currents. Optional with integrated auxiliary contacts to monitor the circuit.

The trip point is always at maximum allowable current, independent of ambient temperature. Mid-trip handle to indicate clearly a breaker operation caused by electrical fault. With unique arc chute design which results in high interrupting capacities. Up to 3 poles which all break its electronic circuits when 1 breaker trips, for optimal protection of the system. Wide range of currents from 100 A to 700 A and many options available.

Application

To be used in every high current application where electrical systems, circuits or components must be protected against too high currents. This situation can occur, when under strained or heavy use a motor or other load-generating component within the equipment will draw additional current from the power source. High currents cause the wires or components to overheat and ultimately burn up.

A circuit protection device should be employed at any point where a conductor size changes. Many electronic circuits and components like transformers have a lower overload withstand threshold level than conductors such as wires and cables. These components require circuit protection devices featuring very fast overload sensing and opening capabilities. The FR circuit breaker can be used in all Railway applications where protection against overload and short circuit is necessary, for example HVAC systems, (door) control systems, braking systems, passenger information systems, etc..

Features

- Ideal for very high current applications
- Precise, temperature independent operation
- Panel mount
- Integrated auxiliary contacts (optional)
- Up to 3 poles configuration
- High interrupting capacities due to unique arc chute method
- Mid-trip handle for electrical trip indication (optional)
- Immediate resetting possible
- Wide current range: 100-700 A
- Wide choice of time delays
- Maximum voltage 137.5 VDC / 277 VAC
- High contact pressure \& longer contact life due to wiping self-cleaning contacts
- Flexibility by many options

Railway compliancy
All our circuit breakers are designed according
EN 50155
IEC 60077-1/2/3/4 NF F 62-001-1/2/3
IEC 61373 NF F61-010
EN 50124-1 IEC 60068-2-30
EN 45545-2 IEC 60068-2-52
IEC 60947-2
NF F16-101/102
MIL-STD-202G Method 107D, condition A
MIL-STD-202G Method 106D

Technical specifications

Electrical characteristics

General characteristics

Number of poles	1,2 or 3 poles
Terminals	Stud / screw / box wire connector, see circuit \& terminal diagrams.
Auxiliary contacts	Faston or solder type, see circuit \& terminal diagrams.
Mounting	The hydraulic-magnetic circuit breakers of Mors Smitt can be mounted in any position. A hydraulic-magnetic break- er is designed to "must hold" at 100\% of the breaker's current rating and is calibrated to "must trip" at 125\% of the breaker's current rating. If the mounting position is +90 degrees from a vertical panel mount (handle facing down, ceiling mount position) the trip and must hold rating is reduced by 10\%.
Body	Blue colour
Actuator	Handle, white or black with "I O" and/or "On-off" legends
Int. circuit configuration	Series trip
Weight	950 gram per pole (average, depending on configuration)
Width per pole	38.1 mm
Material	Half shell - BMC 605 Handle - Valox 420SEO UL94V0 Terminals - Brass with acid tin plate

Mors Smitt

Circuit breaker

FR

Mechanical characteristics

Endurance	Single or multipole: 8.000 operations @ 5 per minute (4.000 "ON-OFF" operations with rated current and voltage + 4.000 operations with no load). Parallel pole construction: 1.000 operations with rated current and voltage @ 5 per minute.
Trip indication: Standard (no mid-trip)	When manually moving the operating handle from OFF to ON position, an auxiliary switch is actuated. When an overload or a short circuit causes the circuit breaker to trip, the operating handle moves positively to the OFF position and the auxiliary switch is actuated.
Mid trip	When manually moving the operating handle from OFF to ON position, an auxiliary switch is actuated. When an overload or a short circuit causes the circuit breaker to trip, the operating handle moves positively to the mid posi- tion and the auxiliary switch is actuated.
Mid-trip with alarm switch	When manually moving the operating handle from OFF to ON position, an auxiliary switch is not actuated. When an overload or a short circuit causes the circuit breaker to trip, the operating handle moves positively to the mid position and the auxiliary switch is actuated. In this case the auxiliary switch is only actuated by an electrical trip, not by manually operating the handle. Remark: It is possible to manually switch the circuit breaker to the mid-trip position when the handle is switched from OFF to ON position quickly and with strong upwards force. Normally this won't occur in standard use. This is a normal phenomenon related to the design of the product.

Environmental characteristics

Environmental	Complies to EN $50125-1$ and IEC 60077-1
Operating temperature	$-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Vibration	IEC 61373, Category 1, class B body mounted
Shock	IEC 61373, Category 1, class A \& B body mounted
Thermal shock	Complies to MIL-PRF-55629 \& MIL-STD-202
Salt mist	Complies to MIL-PRF-55629 \& MIL-STD-202
Fire \& smoke	Complies to NF F 16101, NF F 16102
Protection	IEC 60529, IP40 when a panel is mounted over the circuit breaker
Moisture resistance / humidity	Complies to MIL-PRF-55629 \& MIL-STD-202

Circuit breaker

Resistance, impedance
Resistance, impedance values from Line to Load terminals
(Values based on series trip circuit breaker)

Table of time delay values

$\begin{gathered} \text { TRIP } \\ \text { TIME } \\ \text { (SECONDS) } \end{gathered}$	PERCENT OF RATED CURRENT								
	Delay	100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
	11	No Trip	. $013-.125$. $010-.070$. $008-.032$. $006-.020$. $005-.020$. $004-.020$. $004-.020$
	12	No Trip	. 475 -10.0	. $275-2.80$. $140-.850$. $030-.190$. $015-.125$. $010-.050$. $008-.038$
	14	No Trip	10.0-110	6.00-40.0	2.50-15.0	. $500-3.00$. $180-1.00$. $010-.280$. $008-.080$
	16	No Trip	110-1000	60.0-40 0	22.0-150	4.00-25.0	1.00-5.50	. $010-1.80$. $008-.390$
	22	No Trip	.700-12.0	. $350-4.00$. $130-1.30$. $027-.220$. $008-.130$. $004-.090$. $004-.045$
	24	No Trip	10.0-16 0	6.00-60.0	. $220-20.0$. $300-3.00$. $050-1.30$. $007-.500$. $005-.060$
	26	No Trip	50.0-70 0	32.0-350	10.0-90.0	1.50-15.0	. $500-7.00$. $020-3.00$. $006-2.00$

Notes:

- Delay curves $11,12,14,16,21,22,24,26$: Breakers to hold 100% and must trip at 125% of rated current and greater within the time limit shown in this curve
- All curves: Curve data shown represents breaker response at ambient temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ with no preloading. Breakers are mounted in standard wall-mount position. Delay times may vary at different temperature, the trip current rating remains unchanged
- The minimum inrush pulse tolerance handling capabilities is 10 times rated current based on a $60 \mathrm{~Hz} 1 / 2 \mathrm{cycle}, 8.33 \mathrm{~ms}$ pulse

Circuit breaker

Time delay values

Short

Medium

Long

Circuit breaker FR

Time delay values

DC

Ultrashort

Short

Medium

Long

Circuit breaker

Circuit \& terminal diagrams

HANDLE POSITION VS. AUX/ALARM SWITCH MODE						
STANDARD C/B			MID TRIP C/B		MID TRIP C/B + ALARM SWITCH MODE	
$\begin{aligned} & \text { CIRCUIT } \\ & \text { BREAKER } \\ & \text { MODE } \end{aligned}$	HANDLE POSITION	AUX. SWITCH MODE	HANDLE POSITION	AUX. SWITCH MODE	HANDLE POSITION	AUX. SWITCH MODE
OFF						
ON						
$\underset{\text { TRIP }}{\text { ELECTRICAL }}$						

Notes:

1. All dimensions are in inches [millimeters]
2. Tolerance ± 0.020 [0.51] unless otherwise specified

Circuit breaker

Circuit \& terminal diagrams

Non-parallel pole construction (1-3 pole)

TERMINAL DETAILS
BACK CONNECT

3/8-16 THREADED STUD
CODE 1

FRONT CONNECT

Notes:

1. All dimensions are in inches [millimeters]
2. Tolerance ± 0.020 [0.51] unless otherwise specified

Circuit breaker
 FR

Circuit \& terminal diagrams

Parallel pole construction (2-3 pole)

Notes:

1. All dimensions are in inches [millimeters]
2. Tolerance ± 0.020 [0.51] unless otherwise specified

Circuit breaker

FR
Circuit \& terminal diagrams

Circuit breaker
 FR

Circuit \& terminal diagrams

Circuit breaker
 FR

Circuit \& terminal diagrams

Notes:

Circuit breaker

Ordering scheme FR - page 1

Mors Smitt

Circuit breaker

Ordering scheme FR - page 2

Special configurations, not covered by this ordering scheme, on request.

Example : FR2-820-14-B-A-2-0-1-A-B-A

Notes:

1. Parallel pole constructions are supplied with factory installed busbar on line and load
2. Actuator code:

S: Handle moves to mid-position only upon electrical trip of the breaker
T: Handle moves to mid-position and alarm switch activates only upon electrical trip of the breaker
3. On multi-pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole (rear view) On parallel pole constuction breakers, one auxiliary switch is supplied, mounted in the extreme left pole (rear view) Back mounted breakers require special mounting provisions when an auxiliary switch is specified
4. Only available for and must be used with parallel pole construction
5. An 'anti-flash over barrier' is supplied between poles on multipole breakers with 3/8-16 stud terminals

Recommended torque value stud terminals is 180-200" lbs (=20.3-22.6 Nm)
6. Terminals $2,4 \& 5$ are shipped without terminals hardware
7. Box wire connector will accept \#6 through 250 MCM copper wire
8. 2- or 3-pole circuit breaker required for 120/240 VAC rating
9. 3-pole circuit breaker required for 120/208 VAC rating
10. TUV certified: possible on request
11. Ratings over 250 amps are parallel pole constructions (circuit code P): $300-450 \mathrm{amp}$ ratings are available on two pole breakers. $500-700 \mathrm{amp}$ ratings are available on three pole breakers
12. Recommended torque value mounting inserts is $15-20^{\prime \prime} \mathrm{lbs}(1.7-2.3 \mathrm{Nm})$

Mors Smitt

Circuit breaker

[^0]Mors Smitt Asia Ltd.
Unit B \& C, 25/F., Casey Aberdeen House 38 Heung Yip Road, Wong Chuk Hang Hong Kong
Tel: +852 2343555
sales.msa@wabtec.com
Wabtec Netherlands B.V. Darwinstraat 10, 6718 XR Ede, Netherlands Tel: +31 (0)88 6004500 sales.msbv@wabtec.com

Mors Smitt France SAS
2 Rue de la Mandinière 72300 Sablé-sur-Sarthe, France Tel: +33 (0) 243928200
sales.msf@wabtec.com

Mors Smitt Technologies Ltd. 1010 Johnson Drive, Buffalo Grove, IL 60089-6918, USA Tel: +1 8477776497 salesmst@wabtec.com

Mors Smitt UK Ltd.
Graycar Business Park, Burton on Trent, DE13 8EN, UK Tel: +44 (0)1283 357263 sales.msuk@wabtec.com

RMS Mors Smitt

19 Southern Court
Keysborough, VIC 3173, Australia Tel: +61 (0)3 85441200
sales.rms@wabtec.com

(c) Copyright 2021

All rights reserved. Nothing from this edition may be multiplied, or made public in any form or manner, either electronically, mechanically, by photocopying, recording, or in any manner, without prior written consent from Mors Smitt. This also applies to accompanying drawings and diagrams. Due to a policy of continuous development Mors Smitt reserves the right to alter the equipment specification and description outlined in this datasheet without prior notice and no part of this publication shall be deemed to be part of any contract for the equipment unless specifically referred to as an inclusion within such contract. Mors Smitt does not warrant that any of the information contained herein is complete, accurate, free from potential errors, or fit for any particular purpose. Mors Smitt does not accept any responsibility arising from any party's use of the information in this document.

[^0]: T Over 10 million Mors Smitt relays in use in rail transport applications worldwide!

