10:1 PU setting ranges
Select from two options:
■ 5-50\% or $20-200 \%$ of nominal input current

- 1A or 5A nominal CT's
- Fast O/C pick up time $<15 \mathrm{~ms}$
- Fast O/C reset time <20ms

■ < 5% transient over-reach

- Phase segregated initiate input
- 3 phase initiate input
- Internal timer initiate input
- Non volatile trip flag
- Remote flag reset input
- Current pick up LED per phase
- 8 C/O output contacts
- Three time delay ranges $0-0.99 \mathrm{~s}, 0-9.9 \mathrm{~s}, 0-99 \mathrm{~s}$
■ High accuracy \& repeatability timing compensated for output relay delay
- Time settings easily selected by digital thumb wheel switches
- Timing in progress LED

■ 40-300V DC auxiliary supply Power supply fail relay drops out if the auxiliary supply fails.

- Optional 20-70V DC supply

■ Size 4M draw out case

Application
The 2C65 Series relays are adjustable AC current sensing relays designed for high or low voltage power systems where they can be used in a large number of overcurrent applications.
Definite time overcurrent relays offer advantages over inverse time protection in power systems which have a wide variation in source impedance. Faults can be cleared in relatively short times irrespective of the magnitude of the fault current, \& coordination of several relays in a system can be obtained at all times regardless of fault current variation.

Operating Logic

OPERATING LOGIC CONFIGURATION

The 2C65 may be configured \& wired to operate in phase segregated \& three phase modes as depicted in logic diagram figures 1 to 4. Where the 2C65 is specified without the integrated time delay element all output contacts operate as instantaneous \& the Timer Initiate input does not function.
In each logic example output contacts 1-4 have been set for instantaneous operation - Configuration switch 5 set to ON.

Where configuration switch 5 is set to OFF output contacts $1-4$ will operate as time delayed contacts.
For figures 1 to 4 the operating logic is repeated for phase $B \& C$.

TIMER INITIATE INPUT

CB auxiliary contact or palette switch check scheme
This form of circuit breaker failure protection is typically applied to transformer protection to provide supplementary coverage for faults that are low in current magnitude that would otherwise not be protected by a current check circuit breaker failure protection scheme. For example, Buchholz (gas) protection \& reflected faults through transformers.

It should be noted that initiating the timer via the timer initiate status input will cause all delayed output contacts to pick up once the preset time delay has expired. In all circumstances the timer initiate status input must be reset before any time delayed contacts are reset.

PHASE SEGREGATED OPERATING LOGIC

Figure 1:
Phase segregated inputs \& phase segregated output contacts Configuration switch 4 set to OFF
Configuration switch 5 set to ON

Figure 2:
Phase segregated inputs \& 3 phase output contacts
Configuration switch 4 set to ON
Configuration switch 5 set to ON

THREE PHASE OPERATING LOGIC

Figure 3:
Three phase input \& phase segregated output contacts
Configuration switch 4 set to OFF
Configuration switch 5 set to ON

Figure 4:
Three phase input \& 3 phase output contacts
Configuration switch 4 set to ON
Configuration switch 5 set to ON

CONFIGURATION SWITCHES
Configuration switches are accessible to the user \& can be set by withdrawing the relay module \& following the instructions on the side plate label. A bank of 5 switches are provided as depicted below \& are read each time the 2C65 is powered up:

While the function of the configuration switches may vary for special custom models, the standard functions \& default settings are described below:

Switch 1 - Status input operation
ON DC operation only

- AC rejection ON
(Default)
OFF AC/DC operation
- AC rejection OFF

Switch 2 - Current initiate inputs
ON Apply volts to enable
OFF Remove volts to enable
Switch 3 - Timer initiate input
ON Apply volts to enable
(Default)
OFF Remove volts to enable
Switch 4 - Output relay function
ON Three phase outputs
(Default)
OFF Phase segregated outputs
(Default)
ON Output relays 1-4 instantaneous

FRONT PANEL INDICATORS
LED indicators are provided on the front panel:
Power On solid when auxiliary supply healthy
Current On when phase current picked up
Timing
Flashing during timing
Latches on when trip relay operates
Trip

The trip LED status is stored in nonvolatile memory \& is restored when the 2C65 is powered up after loss of the auxiliary supply. The preserved trip LED state is reset using the front panel flag reset button or status input.
A hand \& remote reset magnetic disc flag (permanent memory) trip indicator may be specified as an option. Note that an auxiliary supply is required to reset the flag circuits.
CURRENT SETTINGS
$5-50 \%$ or 20-200\% of nominal CT rating
Repeatability: $\pm 2 \%$ of setting
Setting: $\quad \pm 5 \%$ of maximum setting
DROPOUT PICKUP RATIO
85\% setting: \quad PCB jumper J103 fitted left - Factory default 75% setting: \quad PCB jumper J103 fitted right as per figure 5.

To change the dropout / pickup ration remove the relay module from the case, locate the three pin jumper header position J103 \& fit jumper for 75% or 85% dropout pickup ratio.

Configuration \& Setting
OPERATING TIME OF CURRENT ELEMENT
At $2 \times$ O/C setting: Logic pick up time $<10 \mathrm{~ms}$
Time delayed contact reset
Logic drop out time is less than 20 ms when the current drops from 2 $X O / C$ setting to zero. This means that if current is removed $>20 \mathrm{~ms}$ before the preset time delay expires the trip output contacts will not operate.
Instantaneous contact reset
Output contacts set for instantaneous operation will reset in less than 20 ms when current drops from $2 \times \mathrm{O} / \mathrm{C}$ setting to zero.
OUTPUT CONTACT DWELL TIME
Once operated all time delayed output contacts have a minimum dwell time of 100 ms to allow adequate time for CB pallet switches to operate.
TIME SETTING RANGES
The 2C65 relay allows for precision time settings of between zero (Minimum operate time) \& 99 seconds. This is achieved by the use of two decimal thumb wheel switches \& a range multiplication switch on the front panel.

Range Selector Setting	Achievable Time Setting Range	
Range 1	Zero to 0.99 Sec	0.01 Sec
Range 2	Zero to 9.9 Sec	0.1 Sec
Range 3	Zero to 99 99 Sec	1 Sec

Table 1
TIME SETTING CHANGES
The time delay \& function settings should only be changed when the timing initiate LED is extinguished. Time settings are read at the beginning of each timing sequence.
TIMER INITIATE STATUS INPUT DELAY

		AC Rejection Filter	
Initiate input	Minimum	ON	OFF
DC	P/U	$<16 \mathrm{~ms}$	$<4 \mathrm{~ms}$
	D/O	$<4 \mathrm{~ms}$	$<16 \mathrm{~ms}$
AC	P/U	N/A	$<23 \mathrm{~ms}$
	D/O		

Table 2
MINIMUM OUTPUT CONTACT PICK UP TIME
For an output contact to pick up, both the O/C \& relay initiate logic conditions must be met as per figures 1 to 4 . The minimum pick up time of a contact is therefore determined by the last logic element to pick up.
Where a status input initiate is the last element to pick up the minimum contact pick up time is equal to the status input delays in Table $2+6 \mathrm{~ms}$.
Where an O/C initiate is the last element to pick up the minimum contact pick up time is less than 15 ms .
Time delay settings \leq to the above minimums will result in a relay contact operate time equal to the minimum as per figure 6.

TIMING ACCURACY
Maximum timing error as a \% of setting + uncertainty in ms.

	AC Rejection Filter	
Initiate input	ON	OFF
DC	$-0.19 \%+0.25 \mathrm{~ms}$	
AC	N/A	$-0.19 \%+19 \mathrm{~ms}$

Table 3

BURDENS
Auxiliary supply: (at 110 V DC nominal supply)
Less than 3 watts during timing.
Less than 6 watts with output relays energized.
Sensing circuits: VA per phase all settings at 50 Hz .

I amps	1A CT input	5A CT input
1	0.25	<0.01
5	6.3	0.18
10	25	0.72
20	100	2.9
25	-	4.5
30	-	6.5

CT INPUT THERMAL WITHSTAND (Per phase)

	1 A CT	$5 \mathrm{~A} \mathrm{CT}^{*}$
Continuous	3.5	25
4.5 s	39	250
3 s	75	450
2 s	90	550
1 s	120	800
0.5 s	180	1,000

* M Series case terminals are limited to 400A for 1s.

AUXILIARY SUPPLY
$40-275 \mathrm{~V}$ AC \& $40-300 \mathrm{~V}$ DC switchmode supply with power on LED $20-70 \mathrm{~V}$ DC switchmode supply with power on LED.

REMOTE FLAG RESET FUNCTION
Application of a control voltage to the optional remote flag reset input will cause the bistable flag to be reset.
STATUS INPUT OPERATING VOLTAGE (AC rejection filter) The operating range of the status inputs are set using internal configuration switch 1 . This setting may be predefined when ordering.
18-300V DC
Set Configuration Switch to ON In this mode the universal status input will reject AC signals that may be induced on the control wiring. Suitable for high security applications where a DC battery supply is available.

18-300V DC \& 18-275V AC Set Configuration Switch to OFF In this mode the universal status input is designed to operate on both AC \& DC input voltages. Suitable for applications where an AC auxiliary voltage is available such as transformer or generator control panels.
STATUS INPUT MINIMUM OPERATING CURRENT
10 mA P/U for 1 ms then reducing to 1.5 mA after 4 ms .
While the function of the configuration switches may vary for special custom models, the standard functions \& default settings are described in the Ordering Information section.

Technical Data

OUTPUT CONTACTS
Eight (8) C/O self reset contacts.
Function as described in the wiring diagram.
RELAY FAIL ALARM
A C/O alarm contact is maintained in the energized state when all of the following conditions are met:

- The auxiliary supply is applied
- The internal 24 V DC rail is within acceptable limits
- The CPU hardware watchdog maintains a pulsing output

A CPU software watchdog records "suspect" events to an assert register and if necessary, performs a soft restart.
OUTPUT CONTACT RATINGS
IEC60255-0-2
Carry continuously $\quad 5 \mathrm{~A}$ AC or DC
Make \& carry $\quad 0.5 \mathrm{~s} 20 \mathrm{~A} \mathrm{AC}$ or DC
$\mathrm{L} / \mathrm{R} \leq 40 \mathrm{~ms} \& \mathrm{~V} \leq 300 \mathrm{~V} \quad 0.2 \mathrm{~s} 30 \mathrm{~A} \mathrm{AC}$ or DC
AC resistive 1,250VA
Break capacity AC inductive 250VA @ PF ≤ 0.4
$\mathrm{I} \leq 5 \mathrm{~A} \& \mathrm{~V} \leq 300 \mathrm{~V}$
DC resistive 75W
DC inductive $\quad \begin{array}{ll}30 \mathrm{~W} @ \mathrm{~L} / \mathrm{R} \leq 40 \mathrm{~ms} \\ 50 \mathrm{~W} @ \mathrm{~L} / \mathrm{R} \leq 10 \mathrm{~ms}\end{array}$
Minimum number of operations Minimum recommended load

TRANSIENT OVERVOLTAGE
Between all terminals \& earth
Between independent circuits without damage or flashover

INSULATION COORDINATION
Between all terminals \& earth
Between independent circuits
Across normally open contacts
AUXILIARY SUPPLY
Allowable breaks / dips in supply Collapse to zero from nominal voltage
HIGH FREQUENCY DISTURBANCE
2.5 kV 1 MHz common mode
1.0kV 1MHz differential mode

ELECTROSTATIC DISCHARGE 6 kV contact discharge
FAST TRANSIENT
$4 \mathrm{kV}, 5 / 50 \mathrm{~ns}, 100 \mathrm{KHz}$ repetitive
TEMPERATURE RANGE
Operating:
Storage:
10^{6} at maximum load
0.5 W limit $10 \mathrm{~mA} / 5 \mathrm{~V}$

IEC60255-5 CLASS III
$5 \mathrm{kV} 1.2 / 50 \mathrm{us} 0.5 \mathrm{~J}$
5kV 1.2/50us 0.5J
IEC60255-5 CLASS III
2.0kV RMS for 1 minute
2.0kV RMS for 1 minute
1.0kV RMS for 1 minute

IEC60255-11
$\leq 20 \mathrm{~ms}$
IEC60255-22-1 CLASS III
$\leq 5 \%$ variation
IEC60255-22-2 CLASS III
$\leq 5 \%$ variation
IEC60255-22-4
$\leq 5 \%$ variation
IEC68-2-1/2

$$
-5 \text { to }+55^{\circ} \mathrm{C}
$$

$$
-25 \text { to }+75^{\circ} \mathrm{C}
$$

IEC68-2-78
HUMIDITY

CASE
Size 4M56-S draw out
56 M4 screw terminals
Flush panel mount or 4 U high $1 / 4$ width 19 inch rack mount
SHIPPING DETAILS
Each relay is supplied individually packed in preformed cardboard cartons with internal moulded polystyrene former.
Weight: 3.3 Kg
Size: $\quad 370(\mathrm{~L}) \times 240(\mathrm{~W}) \times 145(\mathrm{D}) \mathrm{mm}$ - Size 4 case
ACCESSORIES SUPPLIED WITH EACH RELAY
$1 \times$ M4 self threading mounting screw kit
P/N 290-406-151
$2 \times$ M4 terminal screw kit (28 per kit)
P/N 290-407-153

Wiring Diagram

Ordering Information

ORDER CODE

The order code determines the production build in the factory \& cannot be changed in the field.

Generate the required order code as follows: e.g. 2C65-BBAB

1 AUXILIARY SUPPLY RANGE
A 20-70V DC
B $40-275 \mathrm{~V}$ AC \& 40-300V DC
2 CURRENT SETTING (\% of nominal)
$\begin{array}{lll}\text { A } & 5-50 \% & \text { All phases } \\ \text { B } & 20-200 \% & \text { All phases } \\ \text { C } & 20-200 \% & \text { Phase A \& C + 5-50\% E/F (In place of phase B) }\end{array}$
3 CT RATING (Nominal)
A 1A
B 5 A

4 TIMING FUNCTION

A No time delay setting - Instantaneous overcurrent
B Definite time delay - LED trip indication (Standard)
4M56 Case terminations (REAR VIEW)

RMS Mors Smitt
19 Southern Court
Keysborough, VIC 3173, Australia
Tel: +61 (0)3 85441200
sales.rms@wabtec.com

Wabtec Netherlands B.V.
Darwinstraat 10
6718 XR Ede, Netherlands
Tel: +31 (0)88 6004500
wnl_salessupport@wabtec.com

Visit www.morssmitt.com/rms for the latest product information.
Due to RMS continuous product improvement policy this information is subject to change without notice.

