

CM relay - 7 contacts + 2 gold contacts

Datasheet

Description

The CM relay is designed for combined power & dry circuit applications in diesel locomotives.

Part number CM 045 72 37 S M is rated for 72 VDC nominal voltage and is configured with 4 N/C and 5 N/O double break contacts. Two of them (1 N/C & 1 N/O) are gold bifurcated contacts (dry circuit). All other contacts are in silver.

On specific request, to provide for the large voltage drop that occurs during start-up of a diesel engine, the non-dropout voltage can be adjusted to a low value of 24 VDC for a 72 VDC nominal coil voltage

The CM relays is pluggable in the COR NJ socket.

Application

The CM relay is designed for both power levels and low level signals are being switched for general purpose heavy duty applications such as lighting, pumps and fans, as standard Weld no transfer design for safety critical applications such as door control, emergency brake failure, interlocking traction and breaking with a gold bifurcated contact for dry circuit signal information

Features

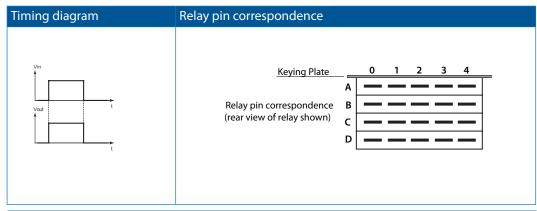
- Instantaneous relay
- For combined power & dry circuit applications in diesel locomotives
- 4 N/C + 5 N/O double break contacts with 1 N/C & 1 N/O gold bifurcated contact and all other contact in silver
- Weld no transfer safety contacts standard on silver contacts
- Contact life (mechanical) of 100 million cycles
- -40 °C...+80 °C operating temperature

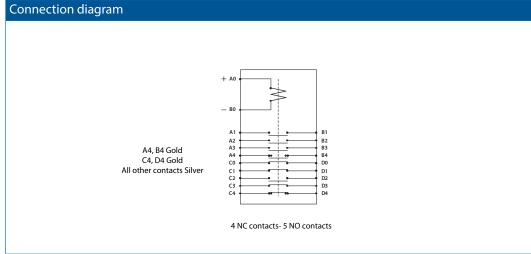
Benefits

- Proven reliable in heavy duty application
- Space Saving package size
- Long life cycle cost
- Easy to maintain and replace
- Used in safety critical application
- Low life cycle cost

Railway compliancy

- NFF 62-002 Rolling stock -Instantaneous relays contacts and sockets
- NF F16-101/102 Fire behaviour -Railway rolling stock





Functional and connection diagrams

Coil data

Unom	Uoperating (VDC)	Pnom (W)	Uhold (VDC)	Udrop-out (VDC)	R coil (Ω) ⁽¹⁾	L/R (ms) (2)
72 VDC	48 / 90	5.2	24	6.5	1000	25

⁽¹⁾ Coil resistance tol.: ± 8% at 20 °C

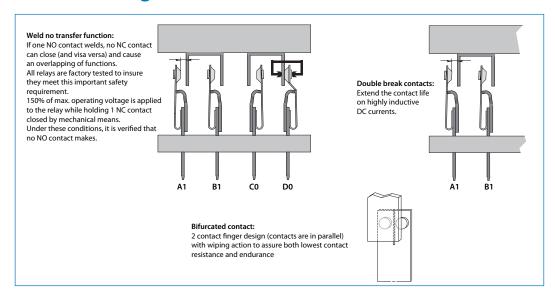
Contact data - standard version (silver contacts)

Nominal current	8 A resistive				
Nominal breaking capacity and life	2.4 A at 72 VDC	L/R: 0 ms	Electrical life: 5x10 ⁶ op.		
	0.8 A at 72 VDC	L/R: 30 ms	Electrical life: 2x10 ⁶ op.		
	2.4 A at 220 VAC 50 Hz	cos∅=1	Electrical life: 2.5x10 ⁶ op.		
	Lamp filament circuit: 160 W a	t 72 VDC	Electrical life: 5x10 ⁵ op.		
Contact overload withstand	At 24 VDC: 160 A at L/R = 0 for 10 ms				
	(10 operations at the rate of 1 o	peration per m	inute)		
Contact closure time	Pick-up time N/O < 45 ms	Drop-o	out* time N/C < 35ms		
Contact opening time	Pick-up time N/C < 30 ms	Drop-o	out* time N/O < 8ms		
Minimum contact continuity	20 mA at 24 VDC				
Number of contacts	9 double make / double break contacts (form X&Y)				
Contact material	Hard silver overlay laminated to copper				
Contact resistance – initial	10 mΩ max at 5 A				
Contact resistance – end of life	40 mΩ max at 5 A				

^{*} With P option less than 70 ms

Contact data – Gold bifurcated contact

Contact configuration	Stationary contacts	Bifurcated 2 contact finger design
(1 C/O double break contact)	Movable contacts	Solid blade
Contact resistance	$\leq 20 \text{ m}\Omega$ at 5 A (carry only)	
Maximum contact ratings	Operating	20 mA maximum at 72 VDC
	Carry only (no make and break)	5 mA maximum at 5 VDC
Minimum current ratings	1 mA at 5 VDC	
Electrical life	2 x 10 ⁶ operations	
Contact material	Stationary contacts	Solid gold alloy
	Movable contacts	Gold over hard silver overlay laminated
		to copper



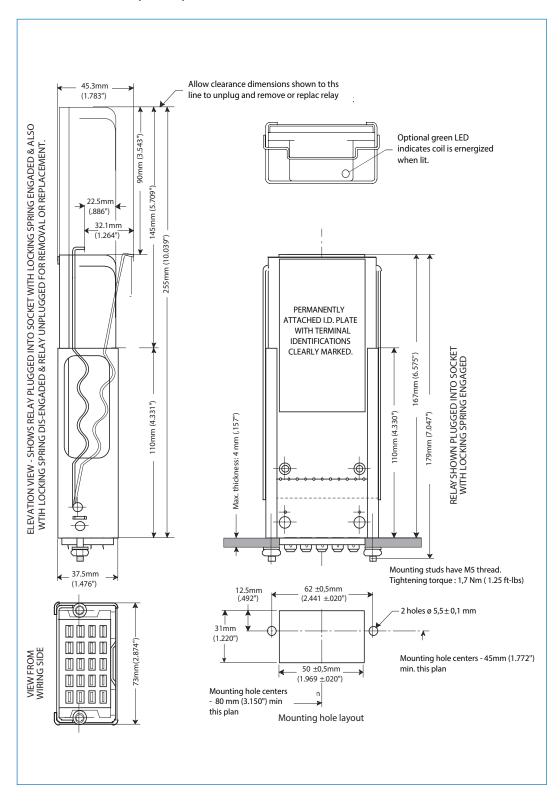
⁽²⁾ Valid for closed relay.

Contact design

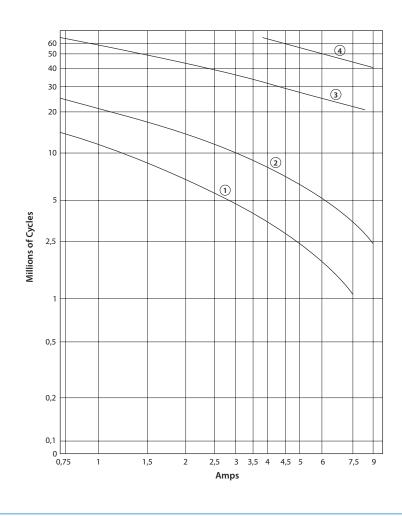
Electrical characteristics

Dielectric strength	2200 VAC, 1 min between contacts
	2600 VAC, 1 min between contacts, coil and frame
Insulation resistance	$\geq 1000 \text{ M}\Omega$ at 500 VDC

Environmental characteristics


Vibration	NF F 62-002 The tests are conducted in the X, Y, Z planes at frequency between 10 & 50 cycles (sinusoidal) at 2 g
Shock	NF F62-002 Tests are applied in both directions in the X, Y & Z planes. Then successive shocks are administered consisting of the positive component of sinusoidal with a value of 30 g, 18 ms Other vibration and shock tests can be performed on request
Mechanical life	$> 100 \times 10^6$ operations
Weight	400 g (14.1 ounces)
Temperature	−40 °C+80 °C
Humidity	93% RH, 40° C for 4 days
Salt mist 5% NaCl, 35° C for 4 days	
Protection	IP40 (relay on socket)
Fire & smoke	Materials: Makrolon polycarbonate (cover) / polyester (base) Note: These materials have been tested for fire propagation and smoke emission according standards NF F 16-101, NF F 16-102.

Dimensions (mm)



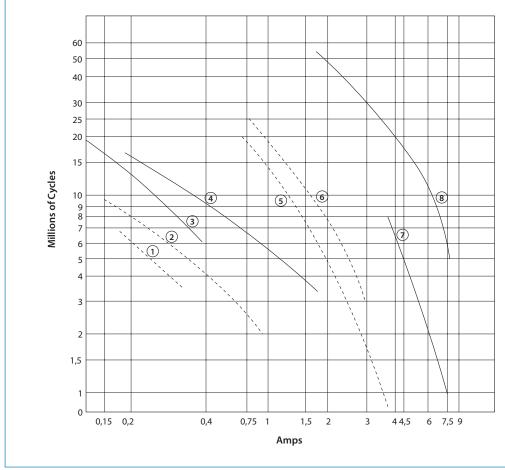
Dynamic relay selection curve No 1

AC Current breaking capacity versus life expectancy in millions of cycles.

Rate of contacts opening and closing = 1200 operations per hour. Curves shown for resistive load (Power Factor = 1).

Curve	1	2	3	4
VAC	220	125	48	24

Dynamic relay selection curve No 2

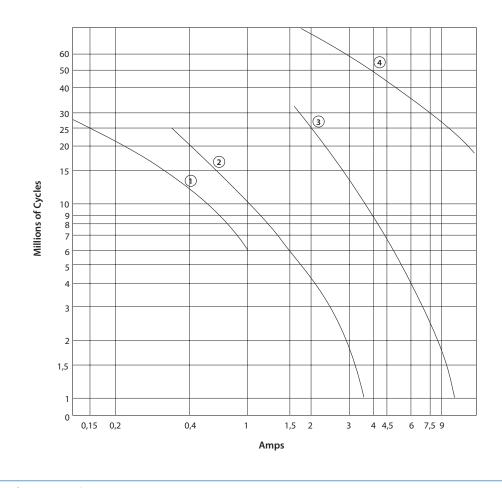

DC Current breaking capacity versus life expectancy in millions of cycles.

Rate of contacts opening and closing = 1200 operations per hour. Curves shown for inductive load:

L/R= 20 ms continuous current

---- L/R= 40 ms continuous current

Curves	1-3	2-4	5-7	6-8
VDC	220	125	48	24

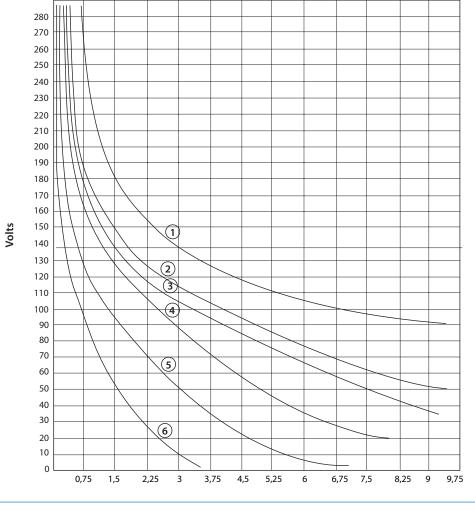


Dynamic relay selection curve No 3

DC Current breaking capacity versus life expectancy in millions of cycles.

Rate of contacts opening and closing = 1200 operations per hour. Curves shown for resistive load (L/R = 0). Continuous current.

Curve	1	2	3	4
VDC	220	125	48	24

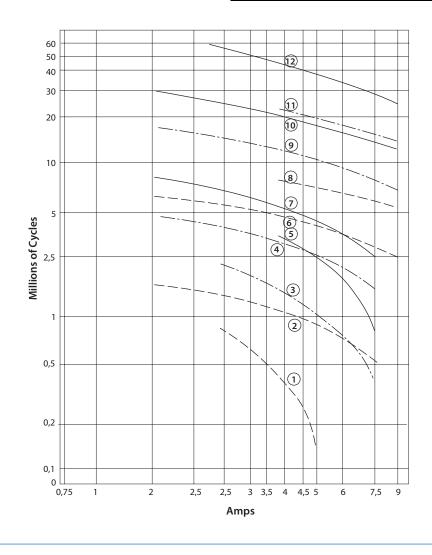


Dynamic relay selection curve No 4

Maximum contact breaking capacity versus voltage for a given L/R.

Rate of contacts opening and closing = 600 operations per hour. Curves shown for resistive load (L/R=0) and inductive loads. Continuous current.

Curve	1	2	3	4	5	6
L/R=	0ms	15ms	20ms	40ms	60ms	100ms

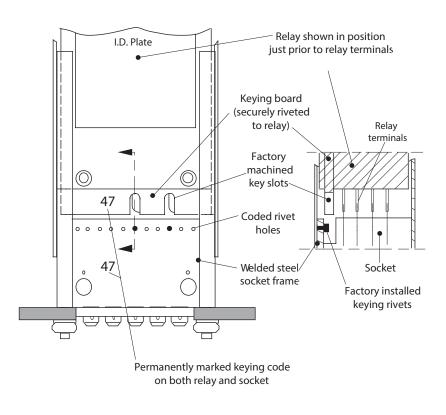

Dynamic relay selection curve No 5

AC Current breaking capacity versus life expectancy in millions of cycles.

Rate of contacts opening and closing = 1200 operations per hour. Values shown for inductive loads:

---- Cos Ø = 0.7 ---- Cos Ø = 0.5 ---- Cos Ø = 0.3

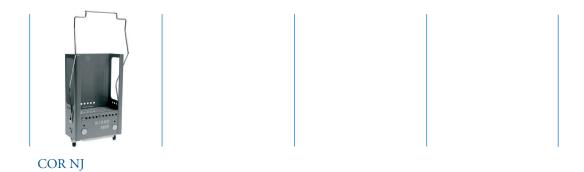
Curves	1,3 &4	2,5 &7	6,9 &10	8,11 &12
VAC	220	125	48	24


CM relay Mechanical keying

Mechanical keying of the relay to the socket is accomplished during manufacturing.

Keying slots are located by their keying code numbers on the relayboard. Keying rivets are located in the steel socket frame in the correct (and corresponding) coded rivetholes to match with the relay.

Once keying has been completed during manufacturing, it is permanent and cannot be changed. This is intentional in the design to ensure that only the correct relay can be plugged into the socket.


The keying is completed by a color code on the top of the relaycover and on the side of the socket for better identification on the train.

CM relay Mounting possiblities

Panel mounting

926913 COR NJ 37 Socket (Alkyde compound) with locking sprin	NJ 37 Socket (Alkyde compound) with locking spring
--	--

CM relay Instructions

Installation

Install socket and connect wiring correctly according identification to terminals. Plug relay into socket. Reverse installation into socket not possible due to mechanical blocking by snap-lock.

Don't reverse polarity of coil connection.

Relays can be mounted (tightly) next to each other and in any attitude. However, we recommend the following:

- If the relay is mounted **vertical**; the direction of contact closure should be oriented transverse to the direction of forward motion.
- If the relay is mounted **horizontal**; the direction of contact closure should be oriented so that gravity will cause the contacts to revert to their de-energised position.

Warning! Never use silicon near by relays

Operation

Before operating always apply voltage to coil to check correct operation.

Long term storage may corrode the silver on the relay pins. Just by plugging the relay into the socket, the female bifurcated receivers will automatically clean the corrosion on the pins and guarantee a good connection.

Do not use the relay in places with flammable gas as the arc generated from switching could ignite gasses.

Maintenance

Correct operation of relay can easily be checked as transparent cover gives good visibility on the moving contacts. When the relay doesn't seem to operate correct, please check presence of coil voltage. Use a multimeter. If LED is used, coil presence should be indicated. If coil voltage is present, but the relay doesn't work, a short circuit of suppression diode is possible (The coil connection was reversed). If relay doesn't work after inspection, please replace relay unit by a similar model. Send defective relay back to manufacturer. Normal wear and tear excluded.

CM relay Ordering scheme

CM

045 72 37

S

1. Relay model

2. Basic part number

3. Coil OVP 4. LED indicator

This example represents a CM 045 72 37 SV.

Description: CM series relay, contact configuration 4 N/C + 5 N/O, Unom 72 VDC, keying 37, transil coil protection, LED indicator

1. Relay model

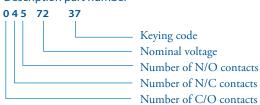
CM

2. Relay basic part number*

045 72 73 4 N/C + 5 N/O 72 VDC

3. Coil overvoltage protection

No coil protection


P Avalanche diode coil protection

S Transil coil protection

4. LED coil voltage indicator

No LEDV LED voltage indicator

* Description part number

Mors Smitt France SAS

Tour Rosny 2, Avenue du Général de Gaulle, F - 93118 Rosny-sous-Bois Cedex, FRANCE T +33 (0)1 4812 1440, F +33 (0)1 4855 9001 E sales.msf@wabtec.com

Mors Smitt Asia Ltd.

29/F., Fun Towers, 35 Hung To Road Kwun Tong, Kowloon, HONG KONG SAR T +852 2343 5555, F +852 2343 6555 E sales.msa@wabtec.com

Mors Smitt B.V.

Vrieslantlaan 6, 3526 AA Utrecht,
NETHERLANDS
T +31 (0)30 288 1311, F +31 (0)30 289 8816
E sales.msbv@wabtec.com

Mors Smitt Technologies Inc.

1010 Johnson Drive, Buffalo Grove, IL 60089-6918, USA T +1 847 777 6497, F +1 847 520 2222 E salesmst@wabtec.com

Mors Smitt UK Ltd.

Graycar Business Park, Barton under Needwood, Burton on Trent, Staffordshire, DE13 8EN, UK T +44 (0)1283 722650 F +44 (0)1283 722651 E sales.msuk@wabtec.com

RMS Mors Smitt

6 Anzed Court, Mulgrave, VIC 3170, AUSTRALIA T +61 (0)3 8544 1200 F +61 (0)3 8544 1201 E sales.rms@wabtec.com

(c) Copyright 2016

All rights reserved. Nothing from this edition may be multiplied, or made public in any form or manner, either electronically, mechanically, by photocopying, recording, or in any manner, without prior written consent from Mors Smitt. This also applies to accompanying drawings and diagrams. Due to a policy of continuous development Mors Smitt reserves the right to alter the equipment specification and description outlined in this datasheet without prior notice and no part of this publication shall be deemed to be part of any contract for the equipment unless specifically referred to as an inclusion within such contract. Mors Smitt does not warrant that any of the information contained herein is complete, accurate, free from potential errors, or fit for any particular purpose. Mors Smitt does not accept any responsibility arising from any party's use of the information in this document.