

MSV100 - Hall effect transducer

Datasheet

Description

The transducers are based on compensating the magnetic field by a closed loop system. The MSV100 is used for the measurement of AC and DC voltages with high galvanic isolation between the voltage carrying conductor and output of the sensor.

The voltage transducer can handle pulsed voltages. The MSV100 transducers are especially designed for secure measuring of a permanent voltage up to 950 V. The voltage measuring range covers a bandwidth from -1400 V to 1400 V.

Application

The Mors Smitt transducers are used to measure high voltages in rolling stock and track side applications. High voltages are converted linear to low power signals.

Features

- Specially designed for railway applications
- Closed loop (compensated)
- High dielectric strength
- Precise linearity
- Precise accuracy
- High dynamic response
- No foucault losses in the magnetic circuit
- EMC shielding (optional)
- Wide temperature range, -50°C..+85°C

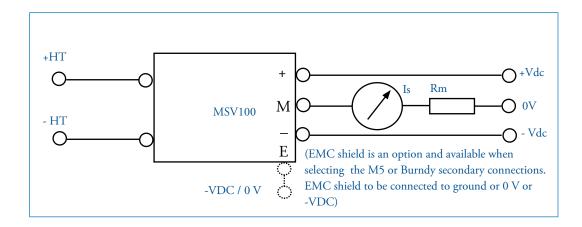
Benefits

- Proven reliable
- Long term availability
- Low life cycle cost
- No maintenance

Railway compliancy

- EN 50155 Railway application electronic equipment used in rolling stock
- IEC 61373 Rolling stock equipment -Shock and vibration test
- NF F16-101/102 Fire behaviour Railway rolling stock
- IEC 60068-2-11 Environmental testing: Salt mist Test ka 96 hours

MSV100 Technical specifications



Connection diagram

Technical specifications

Electrical characteristics

Primary nominal r.m.s. voltage	$V_{_{\mathrm{PN}}}$	950 V
Primary voltage measuring range	$V_{_{ m P}}$	± 1400 V
Secondary nominal r.m.s. current	I_{SN}	50 mA for primary voltage 1000 V
Conversion ratio	K_{N}	1000 V / 50 mA
Primary resistance @ 25 °C	R_p	250 ΚΩ
Secondary coil resistance @ 70 °C	R_s	$60 \Omega \pm 7 \%$
Auxiliary supply voltage	$V_{\rm c}$	± 15 VDC± 24 VDC (± 5 %)
Current consumption	$I_{\rm C}$	± 33 mA + I _C @ 24 VDC
Dielectric strength between		
- primary circuit and secundary circuit	$V_{_{\mathrm{D1}}}$	6 kV (50 Hz - 1 min) / 8 kV (50 Hz - 1 min) *
- shield and secondary circuit	$V_{_{\mathrm{D2}}}$	1.5 kV (50 Hz - 1 min)
Output measuring resistance	R_{M}	220 Ω max for primary voltage 1400 V @ 24°C
		(see explanation below)

^{*} See ordering scheme

Legend:	Example:
dV = Fixed value	dV = 1.6 V
V_N = Nominal auxiliary supply	$V_N = 24 V$
	$V_{NC} = 22.8 V$
V _{NC} = Lower value of the auxiliary supply	$V_{PN} = 950 \text{ V}$
$(V_N - 5 \% \text{ typical})$	$R_{p} = 250 \text{ K}\Omega$
R _s = Secondary coil resistance at 70 °C	$N_p = 25000 \text{ turns}$
I _{SN} = Secondary nominal current	$N_s = 2000 \text{ turns}$
N _p = Primary windings	$R_S = 60 \Omega$
N _s = Secondary windings	$I_{SN} = V_{PN} / ((R_p \times N_S) / N_p)$
R _p = Primary resistance	$I_{SN} = 950 \text{ V} / ((250 \text{ K}\Omega \times 2000)/25000) = 0.0475 \text{ A}$
	$R_{M} = ((V_{NC}-dV) / I_{SN}) - R_{S}$
	$R_{M} = ((22.8 - 1.6) / 0.0475) - 60) = 386.32\Omega$

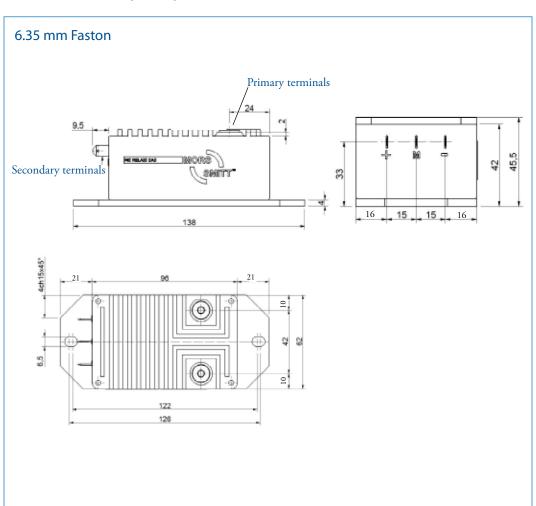
Accuracy / dynamic performance

Overall accuracy @ I _{PN} - T _A = 25 °C	X_{G}	± 0.7 % / ± 1 % *
Linearity	\mathbf{E}_{L}	< 0.1 %
Offset current @ $I_p = 0 - T_A = 25$ °C	I_0	± 0.2 mA max.
(I _p : Internal primary current)		
Response time @ 90% of V _{PN}	T_R	< 100 μs
Thermal drift of I ₀ between (-25 °C+70 °C))	I_{oT}	± 1 mA max

General characteristics

Operating temperature Storing temperature	Λ	-40 °C+70 °C / -50 °C+85 °C * -50 °C+85 °C
Weight	m	500 g ± 10 %
Connection		Faston 6.35 mm - M5 terminals - Burndy connector *

^{*} See ordering scheme



Technical specifications

Dimensions (mm)

- 1. Connection: Primary 2 x M5 insert (maximum torque value 2.2 Nm), secondary 3 x Faston 6.35 mm
- 2. Fastening: 2 slots Ø 6.5 mm
- 3. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length \pm 1 mm and on positions where the value is mentioned in the drawing.
- 4. Drawing is according the European projection method

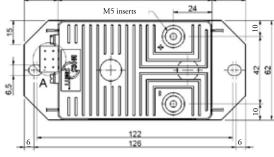
Technical specifications

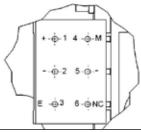
Dimensions (mm)

M5 terminals M5 terminals EMC shield (optional) Solve the shield (optional) EMC shield (optional) Solve the shield (optional) EMC shield (optional)

Notes:

- 1. Connection: Primary 2 x M5 insert (maximum torque value 2.2 Nm), secondary 3 x M5 terminals (maximum torque value 2.2 Nm), a 4th M5 terminal is placed when EMC is selected (maximum torque value 2.2 Nm)
- 2. Fastening: 2 slots Ø 6.5 mm
- 3. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length \pm 1 mm and on positions where the value is mentioned in the drawing.
- 4. Drawing is according the European projection method





Technical specifications

Dimensions (mm)

Burndy connection Secondary Primary Burndy Connector SMS6GE6

Connection legend:

+VDC Pin 1

Pin 2 -VDC

EMC shield (optional) Pin 3

(EMC is optional and not

connected if not selected)

Pin 4

Pin 5 -VDC

Pin 6 not connected

- 1. Connection: Primary 2 x M5 insert (maximum torque value 2.2 Nm), secondary burndy connector SMS 6 GE 6
- 2. Fastening: 2 slots Ø 6.5 mm
- 3. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length \pm 1 mm and on positions where the value is mentioned in the drawing.
- 4. Drawing is according the European projection method

MV100

Ordering scheme

Configuration:

This example represents a MSV100-1-D-5-2-Y.

Description: MSV100 transducer, 950 V, M5 terminals, dielectric strength 8 kV, 0.7 % accuracy, -50 $^{\circ}$ C...+85 $^{\circ}$ C temperature range, with EMC shield.

1. Transducer model

MSV100

2. Nominal voltage

3. Secondary connection

4. Dielectric strength

2	6 kV	
5	8 kV	

5. Accuracy

6. Temperature range

1	-40 °C+70 °C	
2	-50 °C+85 °C	

7. EMC shield

N Y	Without EMC shield With EMC shield
	Note: EMC shield option only possible on M5 and 6 pole burndy connection

Mors Smitt France SAS Tour Rosny 2, Avenue du Général de Gaulle, F - 93118 Rosny-sous-Bois Cedex, FRANCE T +33 (0)1 4812 1440, F +33 (0)1 4855 9001

Mors Smitt Asia Ltd.

E sales@msrelais.com

807, Billion Trade Centre, 31 Hung To Road Kwun Tong, Kowloon, HONG KONG SAR T +852 2343 5555, F +852 2343 6555 E info@morssmitt.hk

Mors Smitt B.V. Vrieslantlaan 6, 3526 AA Utrecht, **NETHERLANDS** T +31 (0)30 288 1311, F +31 (0)30 289 8816 E sales@nieaf-smitt.nl

Mors Smitt Technologies Inc. 420 Sackett Point Road North Haven, CT 06473, USA T +1 (203) 287 8858, F +1 (888) 287 8852 E mstechnologies@msrelais.com

Mors Smitt UK Ltd.

Doulton Road, Cradley Heath

West Midlands, B64 5QB, UK

T +44 (0)1384 567 755, F +44 (0)1384 567 710

E info@morssmitt.co.uk

www.morssmitt.com